Set $\Psi_{0}: V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{n}} \rightarrow \mathbb{C}$ restriction of Ψ
Set $\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}$ and

$$
\begin{aligned}
& {\left[\Omega^{(i j)} \Psi_{0}\right]\left(\xi_{1}, \ldots, \xi_{n}\right) } \\
= & \sum_{\mu} \psi_{0}\left(\xi_{1}, \ldots, I_{m} \xi_{i}, \ldots, I_{m} \xi_{j}, \ldots, \xi_{n}\right)
\end{aligned}
$$

Recall: $\left[\left(X \otimes t^{-1}\right)^{(i)} \psi\right]\left(\xi_{1, \ldots}, \xi_{n}\right)$

$$
\begin{equation*}
=\sum_{j_{i} j^{\neq i}}\left(z_{i}-z_{j}\right)^{-1} \psi\left(\xi_{1}, \ldots, x \xi_{j}, \ldots, \xi_{n}\right) \tag{*}
\end{equation*}
$$

Proposition 2:
If a multilinear form $\Psi: H_{\lambda_{1}} \otimes \cdots \otimes H_{\lambda_{n}} \rightarrow \mathbb{C}$ belongs to the space of conformal blocks $H\left(p_{1}, \cdots, p_{n} ; \lambda_{1}, \ldots, \lambda_{n}\right)$, then the restriction $\left(L_{-}^{(i)} \Psi\right)_{0}$ of $L_{-1}^{(i)} \Psi_{:} H_{\lambda_{1}} \otimes \cdots \otimes H_{\lambda_{n}} \rightarrow \mathbb{C}$ an $V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{n}}$ is given by

$$
\left(L_{-1}^{(i)} \Psi\right)_{0}=\sum_{j_{i} \dot{j}+i} \frac{\Omega^{(i j)} \Psi_{0}}{z_{i}-z_{j}}
$$

Furthermore, we have
(1) $\left(L_{n}^{(i)} \tilde{)_{0}}=0, n>0\right.$
(2) $\left(L_{0}^{(i)} \Psi\right)_{0}=\Delta_{\lambda_{i}} \Psi_{0}$
where $\Delta_{\lambda_{i}}$ is eigenvalue of L_{0} on $V_{\lambda_{i}}$.
Proof:
For $v \in V_{\lambda_{j}} \subset H_{\lambda_{j}}$ we have

$$
L_{-1} v=\frac{1}{k+2}\left(\sum_{m} I_{m} \otimes t^{-1} \cdot I_{\mu}\right) v
$$

Combining with (*) we get

$$
\begin{aligned}
& \sum_{\mu} \Psi\left(\xi_{1}, \ldots,\left(I_{\mu} \otimes t^{-1} I_{\mu}\right) \xi_{i}, \ldots, \xi_{n}\right) \\
= & \sum_{j, j \neq i} \sum_{\mu}\left(z_{i}-z_{j}\right)^{-1} \Psi_{0}\left(\xi_{1}, \ldots, I_{\mu} \xi_{i}, \ldots, I_{\mu} \xi_{j}, \ldots, \xi_{n}\right) \\
= & \sum_{j, j \neq i} \frac{\Omega^{(i j)} \Psi_{0}}{z_{i}-z_{j}}
\end{aligned}
$$

Equations (1) and (2) follow directly from definition of Sugawara operators.
Combining Theorem 1 and Proposition 2, gives
Theorem 2:
Let Ψ be a horizontal section of the conformal blocks bundle $\varepsilon_{\lambda_{1} \ldots \lambda_{n}}$. Then the restriction Ψ_{0} satisfies

$$
\frac{\partial \Psi}{\partial z_{i}}=\frac{1}{k+2} \sum_{j^{i} 1 j^{j}+i} \frac{\Omega^{(i j)} \Psi_{0}}{z_{i}-z_{j}}, \quad 1 \leq i \leq n
$$

"Knizhnik-Zamolodchikov equation ∇ is called " $K Z$ connection"

Proposition 3:
Let ψ be a horizontal section of the conformal block bundle $\varepsilon_{\lambda_{1} \ldots \lambda_{n}}$. Then Ψ_{0} satisfies

$$
\sum_{i=1}^{n} z_{i}^{r}\left(z_{i} \frac{\partial}{\partial z_{i}}+(r+1) \Delta_{\lambda_{i}}\right) \Psi_{0}=0
$$

for $r=-1,0,1$
Proof:
Invariance of Ψ_{0} under diagonal action of of gives

$$
\sum_{j=1}^{n} \Omega^{(i j)} \Psi_{0}=0, \quad 1 \leq i \leq n
$$

\longrightarrow Taking sum over i gives:

$$
\begin{align*}
& \sum_{j \neq i} \Omega^{(i j)} \Psi_{0}=-\sum_{j=1}^{n} \Omega^{(i j)} \Psi_{0} \\
\Rightarrow & \sum_{1 \leq i<j \leqslant n} \Omega^{(i j)} \Psi_{0}=-(k+2) \sum_{j=1}^{n} \Delta_{\lambda_{j}} \Psi_{0} . \tag{**}
\end{align*}
$$

by using that $\Omega^{(i j)}=\Omega^{(i i)}$ and $\Omega^{(i j)}$ Casimir

$$
\Rightarrow \sum_{i=1}^{n} z_{i}^{r+1} \frac{\partial \psi_{o}}{\partial z_{i}}=\frac{1}{k+2} \sum_{i \neq j} \frac{z_{i}^{r+1} \Omega^{(i j)} \bar{\Psi}_{0}}{z_{i}-z_{i}}
$$

for $r=-1$: hs $=0$ ($\Omega^{(i i)}$ sym,$\frac{1}{z_{i}-z_{j}}$ anti-sym.)
for $r=0$: hs $=\frac{1}{k+2} \sum_{1 \leq i<j \leq n} \Omega_{n}^{(i)}$

$$
\text { for } \begin{aligned}
r=1: \text { rus } & =\frac{1}{k+2} \sum_{1 \leqslant i<j \leqslant n} \frac{z_{i}^{2} \Omega^{(i j)}}{z_{i}-z_{j}}+\frac{z_{j}^{2} \Omega^{(i j)}}{z_{j}-z_{i}} \\
& =\frac{1}{k+2} \sum_{1 \leqslant i<j \leqslant n} \frac{\left(z_{i}-z_{j}\right)\left(z_{i}+z_{j}\right)}{z_{i}-z_{j}} \Omega^{(i j)}
\end{aligned}
$$

Use $(* *)$, then claim follows.
Proposition 4:
Let Ψ be a horizontal section of the conformal block bundle $\varepsilon_{\lambda_{1} \ldots \lambda_{n}}$. Under a Möbius tref.

$$
\begin{aligned}
& \omega_{j}=\frac{a z_{j}+b}{c z_{j}+d}, \quad 1 \leq j \leq n \\
& a, b, c, d \in \mathbb{C}, a d-b c=1
\end{aligned}
$$

Io behaves as

$$
\Psi_{0}\left(z_{1}, \cdots, z_{n}\right)=\prod_{j=1}^{n}\left(c z_{j}+d\right)^{-2 \Delta_{j}} \Psi_{0}\left(\omega_{1}, \cdots, \omega_{n}\right) .
$$

Proof:
The case $r=-1$ of Prop. 3 shows has Ψ_{0} is invariant under

$$
w_{j}=z_{j}+c, \quad c \in \mathbb{C}, \quad 1 \leq j \leq n .
$$

In the $r=0$ case, $\sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}}$ is the so-called "logarithmic derivative" and Prop. 3 gives

$$
\Psi_{0}\left(\omega_{1}, \ldots, \omega_{n}\right)=\alpha^{-\Delta_{\lambda_{1}}-\cdots-\Delta_{\lambda_{n}}} \Psi_{0}\left(z_{1}, \ldots, z_{n}\right)
$$

Möbius tres. of type $f_{\varepsilon}(z)=\frac{z}{-\sum z+1}$ are called
special conformal tres. and we have

$$
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \tilde{\Psi}_{0}\left(f_{\varepsilon}\left(z_{1}\right), \ldots, f_{\varepsilon}\left(z_{n}\right)\right)=\sum_{j=1}^{m} z_{j}^{2} \frac{d}{d z_{j}} \Psi_{0}\left(z_{1}, \ldots, z_{n}\right)
$$

Prop. $3 \Rightarrow \Psi_{0}^{f_{\varepsilon}}=\prod_{j=1}^{n}\left(-\sum z_{j}+1\right)^{2 \Delta_{j}} \Psi_{0}\left(z_{1}, \ldots, z_{n}\right)$
Since group of Möbius tres. is generated by above 3 tres., the claim follows.
§5.1 Solutions of $k z$ equation
Fix finite dimensional complex semisimple Lie algebra of together with representations

$$
\rho_{j}: \text { of } \longrightarrow \operatorname{End}\left(V_{j}\right), 1 \leqslant j \leqslant n \text {. }
$$

Denote by $\left\{I_{\mu}\right\}$ orthonormal basis of of with respect to Cartan-Killing form and set

$$
\Omega=\sum_{\mu} I_{\mu} \otimes I_{\mu}
$$

For example, for of $=s l_{2}(\mathbb{C})$,

$$
\Omega=\frac{1}{2} H \otimes H+E \otimes F+F \otimes E
$$

The element $C=\sum_{\mu} I_{\mu} I_{\mu}$ in the universal enveloping algebra $U(o g)$ is called "Casimir elem.". We have $\Omega=\frac{1}{2}(\Delta C-C \otimes|-| \otimes C)$
where $\Delta: U(o f) \rightarrow U(o f) \otimes U(o g)$ is comultiplication (egg. $\left.\Delta\left(I_{\mu} I_{\mu}\right)=2 I_{\mu} \otimes I_{\mu}+I_{\mu} I_{\mu} \otimes|+| \otimes I_{\mu} I_{\mu}\right)$
Next, consider logarithmic differential 1 -forms

$$
\begin{aligned}
\omega_{i j} & =d \log \left(z_{i}-z_{j}\right) \\
& =\frac{d z_{i}-d z_{j}}{z_{i}-z_{j}} \quad, \quad i \neq j,
\end{aligned}
$$

defined on Corfu (\mathbb{C}).
\longrightarrow satisfy quadratic relations

$$
\omega_{i j} \wedge \omega_{j k}+\omega_{j k} \wedge \omega_{i k}+\omega_{i k} \wedge \omega_{i j}=0, i<j<k
$$

"Arnold relations" (exercise)
Let $\phi: V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n} \rightarrow \mathbb{C}$ be a multilinear form. We denote by $\Omega^{(i i)} \phi$ the multi-linear form

$$
\begin{aligned}
& \left(\Omega^{(i j)} \phi\right)\left(v_{1} \otimes \ldots \otimes v_{n}\right) \\
= & \sum_{m} \phi\left(v_{1} \otimes \ldots \otimes \rho_{i}\left(I_{\mu}\right) v_{i} \otimes \ldots \otimes \rho_{j}\left(I_{m}\right) v_{j} \otimes \ldots \otimes v_{n}\right)
\end{aligned}
$$

for $v_{1} \otimes \cdots \otimes v_{n} \in V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}$. Then the $K Z$ equation is given by

$$
\begin{equation*}
\frac{\partial \Phi}{\partial z_{i}}=\frac{1}{k} \sum_{j, j \neq i} \frac{\Omega^{(i j)} \Phi}{z_{i}-z_{j}} \tag{*}
\end{equation*}
$$

where K is a non-zero complex parameter and $\Phi\left(z_{1}, \ldots, z_{n}\right)$ is defined over Conf (C)
with values in H om $\operatorname{coc}\left(V_{1} \otimes V_{2} \otimes \cdots \otimes V_{n}, C\right)$
Now, we put

$$
\omega=\frac{1}{k} \sum_{1 \leq i<j \leq n} \Omega^{(i j)} \omega_{i \gamma}
$$

$\longrightarrow(x)$ becomes $d \Phi=\omega \Phi$.
Lemma 1:
The above $\Omega^{(i j)}, 1 \leqslant i \neq j \leqslant n$, satisfy the following relations:

1. $\Omega^{(i j)}=\Omega^{(j i)}$
2. $\left[\Omega^{(i j)}+\Omega^{(j k)}, \Omega^{(i k)}\right]=0$, i,ji,k distinct
3. $\left[\Omega^{(i j)}, \Omega^{(k l)}\right]=0, i, j, k, l$ distinct.

Proof:
Relations 1 and 3 are clear. We show relation 2. Consider the case $n=3$.
Casimir element lies in center of $u(g)$:

$$
[\Delta(c), \Delta(x)]=0
$$

in $U(o f) \otimes U(o f)$ for any $X \in U(g)$. Thus

$$
\left[\Delta(C) \otimes l, \sum_{m} \Delta\left(I_{\mu}\right) \otimes I_{\mu}\right]=0
$$

Together with $\Omega=\frac{1}{2}(\Delta(C)-C(8|-| B C)$, we get

$$
\left[\Omega^{(12)}, \Omega^{(13)}+\Omega^{(23)}\right]=0
$$

since $C \otimes \mid \otimes 1$ and $1 \otimes C \otimes 1$ lie in center of $U(o f) \otimes U(o y) \otimes U(o g)$. Similarly for other index choices.

Lemma 2:
We have $\omega \lambda \omega=0$
Proof:

$$
\omega \wedge \omega=\frac{1}{k^{2}} \sum_{i<j, k<l}\left[\Omega^{(i j)}, \Omega^{(k l)}\right] \omega_{i j} \wedge \omega_{k l}
$$

The Arnold relation then gives

$$
\begin{aligned}
& \sum_{i<j, k<l}\left[\Omega^{(i j)}, \Omega^{(k l)}\right] \omega_{i j} \wedge \omega_{k l} \\
& =\sum_{i<j<k}\left(\left[\Omega^{(i j)}+\Omega^{(j k)}, \Omega^{(i k)}\right] \omega_{i j} \wedge \omega_{i k}\right. \\
& \\
& \left.+\left[\Omega^{(i j)}+\Omega^{(i k)}, \Omega^{\left(j^{k}\right)}\right] \omega_{i j} \wedge \omega_{j k l}\right) \\
& \\
& \quad+\sum_{\{i, j\} \cap\{k, l\}=\phi}\left[\Omega^{(i j)}, \Omega^{(k l)}\right] \omega_{i j} \wedge \omega_{k l},
\end{aligned}
$$

which vanishes by Lemma l.
Hello, hello

