Set
$$\Psi_{i}: V_{\lambda_{i}} \otimes \cdots \otimes V_{\lambda_{n}} \rightarrow \mathbb{C}$$
 restriction of Ψ
Set $\Omega = \sum_{m} I_{m} \otimes I_{m}$ and
 $\left[\Omega^{(ij)}\Psi_{o}\right](\overline{z}_{i}, \dots, \overline{z}_{n})$
 $= \sum_{m} \Psi_{o}(\overline{z}_{i}, \dots, \overline{z}_{n})$ (*)
 $= \sum_{j:j\neq i} (\overline{z}_{i} - \overline{z}_{j})^{-1}\Psi(\overline{z}_{i}, \dots, \overline{z}_{n})$ (*)
 $= \sum_{j:j\neq i} (\overline{z}_{i} - \overline{z}_{j})^{-1}\Psi(\overline{z}_{i}, \dots, \overline{z}_{n})$ (*)
Proposition 2:
If a multilinear form $\Psi: H_{\lambda_{1}} \otimes \cdots \otimes H_{\lambda_{m}} \rightarrow \mathbb{C}$
belongs to the space of conformal blocks
 $H(p_{i}, \dots, p_{n}; \lambda_{i}, \dots, \lambda_{n})$, then the restriction
 $(L^{(i)}, \overline{\Psi})_{o}$ of $L^{(i)}_{-1} \overline{\Psi}: H_{\lambda_{1}} \otimes \cdots \otimes H_{\lambda_{m}} \rightarrow \mathbb{C}$ an
 $V_{\lambda_{1}} \otimes \cdots \otimes V_{\lambda_{m}}$ is given by
 $(L^{(i)}, \overline{\Psi})_{o} = \sum_{j:j\neq i} \frac{\Omega^{(i)}\Psi_{o}}{\overline{z}_{i} - \overline{z}_{j}}$
Furthermore, we have
 $(i) (L^{(i)}, \overline{\Psi})_{o} = 0, n > 0$ (2) $(L^{(i)}, \overline{\Psi})_{o} = \Delta_{\lambda_{i}}\overline{\Psi}$.

where
$$\Delta_{i}$$
 is eigenvalue of Lo an V_{i} .
Proof:
For $v \in V_{i} \subset H_{i}$ we have
 $L_{-1}v = \frac{1}{\kappa+2} \left(\sum_{i} I_{i} \otimes t^{-1} \cdot I_{i} \right) v$
Combining with (*) we get
 $\sum_{i} \mathcal{V}(\mathcal{I}_{i}, ..., (I_{n} \otimes t^{-1}I_{n})\mathcal{I}_{i}, ..., \mathcal{I}_{n})$
 $= \sum_{j:j\neq i} \sum_{i} (2_{i} - 2_{j})^{-1} \mathcal{V}_{i}(\mathcal{I}_{i}, ..., I_{n}\mathcal{I}_{i}, ..., \mathcal{I}_{n}, \mathcal{I}_{i})$
 $= \sum_{j:j\neq i} \frac{\Omega^{(ij)}\mathcal{V}_{i}}{2_{i}-2_{i}}$
Equations (i) and (2) follow directly from
definition of Sugawara operators.
Combining Theorem I and Proposition 2, gives
Theorem 2:
 $\forall t \notin be a horizontal section of the conformal
blocks bundle $\mathcal{E}_{i_{1}...,i_{n}}$. Then the restriction \mathcal{V}_{i}
satisfies
 $\frac{\partial \mathcal{V}}{\partial 2_{i}} = \frac{1}{\kappa+2} \sum_{j:i\neq i} \frac{\Omega^{(ij)}\mathcal{V}_{i}}{2_{i}-2_{j}}$, $1 \leq i \leq n$
"Knizhnik-Zamolodchikov equation"
 \forall is called "KZ connection"$

$$for r = 1 : rhs = \frac{1}{K+2} \sum_{1 \le i < j \le n} \frac{z_i^2 \Omega^{(1j)}}{z_i^2 - z_j} + \frac{z_j^2 \Omega^{(ij)}}{z_j^2 - z_i}$$
$$= \frac{1}{K+2} \sum_{1 \le i < j \le n} \frac{(z_i - z_j)(z_i + z_j)}{z_j^2 - z_j} \Omega^{(ij)}$$

Use
$$(**)$$
, then claim follows.

$$w_{j} = \frac{a_{i} + b}{c_{i} + d}, \quad 1 \le j \le n,$$

a, b, c, d \in C, ad - bc = l,

$$\begin{split} \mathcal{Y}_{o} \quad behaves \quad as \\ \mathcal{Y}_{o}(z_{1}, \ldots, z_{n}) = \prod_{j=1}^{n} (c_{z_{j}} + d)^{-2\Delta_{j}} \mathcal{\Psi}_{o}(\omega_{1}, \ldots, \omega_{n}). \end{split}$$

Proof: The case r=-1 of Prop. 3 shows that I is invariant under

$$\begin{split} & \omega_{j} = z_{j} + c, \quad c \in C, \quad l \leq j \leq n. \\ & \text{In the } r = 0 \quad cose, \quad \sum_{j=1}^{n} z_{j} \frac{\partial}{\partial z_{j}} \text{ is the so-called} \\ & \text{`logarithmic derivative' and Prop. 3 gives} \\ & \Psi_{o}(\omega_{1}, - . , \omega_{n}) = \alpha^{-\Delta_{\lambda_{1}} - ... - \Delta_{\lambda_{n}}} \Psi_{o}(z_{1}, - . , z_{n}). \\ & \text{Möbius trfs. of type } f_{\varepsilon}(z) = \frac{z}{-\varepsilon z + 1} \quad are \quad called \end{split}$$

special conformal tips. and we have $\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \tilde{\Psi}\left(f_{\varepsilon}(z_{1}), \dots, f_{\varepsilon}(z_{n})\right) = \sum_{j=1}^{m} z_{j}^{2} \frac{d}{dz_{j}} \Psi(z_{1}, \dots, z_{n})$ Prop. 3 $\Rightarrow \Psi_{o}^{f_{z}} = \prod_{j=1}^{n} (-z_{j+1})^{2\Delta_{j}} \Psi_{o}(z_{1}, \dots, z_{n})$ Since group of Möbius tips. is generated by above 3 tifs., the claim follows. П § 5.1 Solutions of KZ equation Fix finite dimensional complex semisimple Lie algebra of together with representations $P_j: oj \longrightarrow End(V_j), l \leq j \leq n.$ Denote by {In} orthonormal basis of of with respect to Cartan-Killing form and set $\Omega = \sum I_{n} \otimes I_{n}$ For example, for $c_j = s_2(\mathbb{C})$, $\Omega = \frac{1}{2} H \otimes H + E \otimes F + F \otimes E$ The element C = _ InIn in the universal enveloping algebra U(og) is called "Casimir elen." We have $\Omega = \frac{1}{2} \left(\Delta C - C \otimes I - I \otimes C \right)$ (1)

where
$$\Delta: U(q) \rightarrow U(q) \otimes U(q)$$
 is comultiplication
(e.g. $\Delta(I_m I_m) = 2I_{\infty} \otimes I_m + I_m I_{\infty} + 1 \otimes I_m I_m)$
Next, consider logarithmic differential 1-forms
 $W_{ij} = dlog(z_i - z_j)$
 $= \frac{dz_i - dz_j}{z_i - z_j}, \quad i \neq j,$
defined on Confi (C).
 \rightarrow satisfy quadratic relations
 $W_{ij} \wedge W_{jk} + W_{jk} \wedge W_{ik} + W_{ik} \wedge W_{ij} = 0, \quad i < j < K$
^{*} Arnold relations (exercise)
Yet $\phi: V_i \otimes V_2 \otimes \cdots \otimes V_m \rightarrow C$ be a multilinear
form. We denote by $\Omega^{(i)}\phi$ the multi-linear
form $(\Omega^{(i)}\phi)(v_i \otimes \cdots \otimes v_m)$
 $= \sum_{i=1}^{\infty} \phi(v_i \otimes \cdots \otimes \rho_i(I_m)v_i \otimes \cdots \otimes \rho_g(I_m)v_j \otimes \cdots \otimes v_m)$
for $U_i \otimes \cdots \otimes U_n \in V_i \otimes V_m \rightarrow C$ be a multilinear
 KZ equation is given by
 $\frac{\partial \phi}{\partial z_i} = \frac{1}{K} \sum_{j:j \neq i} \frac{\Omega^{(i)} \phi}{z_i - z_j}$ (*)
where K is a non-zero complex parameter
and $\overline{\phi}(z_i, \dots, z_n)$ is defined over Confin (C)

with values in
$$\operatorname{Hom}_{\mathbb{C}}(V, \otimes V_{1} \otimes \cdots \otimes V_{n}, \mathbb{C})$$

Now, we put
 $\omega = \frac{1}{\kappa} \sum_{1 \leq i < j \leq n} \Omega^{(ij)} \omega_{ij}$
 $\rightarrow (*)$ becomes $d\Phi = \omega \Phi$.
 $\frac{\operatorname{Jemma I}}{\operatorname{The above } \Omega^{(ij)}, 1 \leq i \neq j \leq n, \text{ satisfy the}}$
 $\beta \ell \log \omega_{ing} \operatorname{relations}$.
 $1. \Omega^{(ij)} = \Omega^{(ji)}$
 $2. [\Omega^{(ij)} + \Omega^{(j\kappa)}, \Omega^{(i\kappa)}] = 0, i, j, \kappa \operatorname{distinct}}$
 $3. [\Omega^{(ij)}, \Omega^{(\kappa\ell)}] = 0, i, j, \kappa, \ell \operatorname{distinct}}$.
 $\frac{\operatorname{Proof.}}{\operatorname{Relations 1}}$
 $\operatorname{Relations 1}$ and 3 are clear. We show
relation 2. Consider the case $n=3$.
 $(\operatorname{asimir} element lies in center of U(g)):$
 $[\Delta(C), \Delta(x)] = 0$
in $U(g_{i}) \otimes U(g_{i})$ for any $X \in U(g_{i})$. Thus
 $[\Delta(C) \otimes 1, \sum_{i=1}^{\infty} \Delta(1_{i}) \otimes 1_{i}] = 0$
Together with $\Omega = \frac{1}{2} (\Delta(C) - (\otimes 1 - 1 \otimes C), we get$
 $[\Omega^{(in)}, \Omega^{(rs)} + \Omega^{(2rs)}] = 0$

Lemma 2: We have when = 0 Proof: $\omega \wedge \omega = \frac{1}{\kappa^2} \sum_{i \in \mathbb{R}, k \in \mathbb{R}} \left[\Omega^{(ij)}, \Omega^{(k\ell)} \right] \omega_{ij} \wedge \omega_{\kappa\ell}$ The Arnold relation then gives $\sum_{i \leq j, K \leq \ell} \left[\Omega^{(ij)}, \Omega^{(\kappa\ell)} \right] \omega_{ij} \wedge \omega_{\kappa\ell}$ $= \sum_{i < j < K} \left(\left[\Omega^{(ij)} + \Omega^{(jk)}, \Omega^{(ih)} \right] \omega_{ij} \wedge \omega_{ik} \right)$ + $\left[\Omega^{(ij)} + \Omega^{(ik)}, \Omega^{(jk)}\right] \omega_{ij} \wedge \omega_{jk}$ + $\sum_{\{i,j\} \cap \{k,\ell\}=\phi} [\Omega^{(ij)}, \Omega^{(k\ell)}] \omega_{ij} \wedge \omega_{k\ell}$, which vanishes by Lemma 1. \square Hello, hello